FAQ REQUEST A QUOTE


Logo
 

Frequently Asked Questions

Powder coating

Excerpts taken from Wikipedia, the free encyclopedia
 
 Powder coating is a type of coating that is applied as a free-flowing, dry powder. The main difference between a conventional liquid paint and a powder coating is that the powder coating does not require a solvent to keep the binder and filler parts in a liquid suspension form. The coating is typically applied electrostatically and is then cured under heat to allow it to flow and form a "skin". The powder may be a thermoplastic or a thermoset polymer. It is usually used to create a hard finish that is tougher than conventional paint. Powder coating is used for coating most types of metals 
 

Advantages

There are several advantages of powder coating over conventional liquid coatings:

  1. Powder coatings emit zero or near zero volatile organic compounds (VOC).
  2. Powder coatings can produce much thicker coatings than conventional liquid coatings without running or sagging.
  3. Powder coating overspray can be recycled and thus it is possible to achieve nearly 100% use of the coating.
  4. Powder coating production lines produce less hazardous waste than conventional liquid coatings.
  5. Capital equipment and operating costs for a powder line are generally less than for conventional liquid lines.
  6. Powder coated items generally have fewer appearance differences between horizontally coated surfaces and vertically coated surfaces than liquid coated items.
  7. A wide range of specialty effects is easily accomplished which would be impossible to achieve with other coating processes.

Powder coatings have a major advantage in that the overspray can be recycled. However, if multiple colors are being sprayed in a single spray booth, this may limit the ability to recycle the overspray.

Types of powder coatings

There are two main categories of powder coatings: thermosets and thermoplastics. The thermosetting variety incorporates a cross-linker into the formulation. When the powder is baked, it reacts with other chemical groups in the powder to polymerize, improving the performance properties. The thermoplastic variety does not undergo any additional reactions during the baking process, but rather only flows out into the final coating.

The most common polymers used are polyester, polyurethane, polyester-epoxy (known as hybrid), straight epoxy (fusion bonded epoxy) and acrylics.

Production:

  1. The polymer granules are mixed with hardener, pigments and other powder ingredients in a mixer
  2. The mixture is heated in an extruder
  3. The extruded mixture is rolled flat, cooled and broken into small chips
  4. The chips are milled and sieved to make a fine powder

The powder coating process

The powder coating process involves three basic steps:

  1. Part preparation or the pre-treatment
  2. The powder application
  3. Curing

Part preparation processes and equipment
Removal of oil, soil, lubrication greases, metal oxides, welding scales etc. is essential prior to the powder coating process. It can be done by a variety of chemical and mechanical methods. The selection of the method depends on the size and the material of the part to be powder coated, the type of soil to be removed and the performance requirement of the finished product.

Chemical pre-treatments involve the use of phosphates or chromates in submersion or spray application. These often occur in multiple stages and consist of degreasing, etching, de-smutting, various rinses and the final phosphating or chromating of the substrate. The pre-treatment process both cleans and improves bonding of the powder to the metal. Recent additional processes have been developed that avoid the use of chromates, as these can be toxic to the environment. Titanium zirconium and silanes offer similar performance against corrosion and adhesion of the powder.

Another method of preparing the surface prior to coating is known as abrasive blasting or sandblasting and shot blasting. Blast media and blasting abrasives are used to provide surface texturing and preparation, etching, finishing, and degreasing for products made of wood, plastic, or glass. The most important properties to consider are chemical composition and density; particle shape and size; and impact resistance.

Silicon carbide grit blast medium is brittle, sharp, and suitable for grinding metals and low-tensile strength, non-metallic materials. Plastic media blast equipment uses plastic abrasives that are sensitive to substrates such as aluminum, but still suitable for de-coating and surface finishing. Sand blast medium uses high-purity crystals that have low-metal content. Glass bead blast medium contains glass beads of various sizes.

Cast steel shot or steel grit is used to clean and prepare the surface before coating. Shot blasting recycles the media and is environmentally friendly. This method of preparation is highly efficient on steel parts such as I-beams, angles, pipes, tubes and large fabricated pieces.

Different powder coating applications can require alternative methods of preparation such as abrasive blasting prior to coating. The online consumer market typically offers media blasting services coupled with their coating services at additional costs.

Powder application processes
The most common way of applying the powder coating to metal objects is to spray the powder using an electrostatic gun, or corona gun. The gun imparts a positive electric charge on the powder, which is then sprayed towards the grounded object by mechanical or compressed air spraying and then accelerated toward the workpiece by the powerful electrostatic charge. There is a wide variety of spray nozzles available for use in electrostatic coating. The type of nozzle used will depend on the shape of the workpiece to be painted and the consistency of the paint. The object is then heated, and the powder melts into a uniform film, and is then cooled to form a hard coating. It is also common to heat the metal first and then spray the powder onto the hot substrate. Preheating can help to achieve a more uniform finish but can also create other problems, such as runs caused by excess powder. See the article "Fusion Bonded Epoxy Coatings"

Curing

When a thermoset powder is exposed to elevated temperature, it begins to melt, flows out, and then chemically reacts to form a higher molecular weight polymer in a network-like structure. This cure process, called crosslinking, requires a certain temperature for a certain length of time in order to reach full cure and establish the full film properties for which the material was designed. Normally the powders cure at 200°C (390°F) for 10 minutes. The curing schedule could vary according to the manufacturer's specifications.

The application of energy to the product to be cured can be accomplished by convection cure ovens or infrared cure ovens.

QUICK FIND red rule
HOME GALLERY
ABOUT US CONTACT US
POWDER COATING FAQS
INDUSTRIES SERVED SITE MAP
INVENTORS CORNER SITE CREDITS
horzontal Separator INDUSTRIES SERVED yellow rule
  • Die/Foundry Castings
  • Medical
  • OEM Products
  • Recreational
  • Sheet Metal Job Shops
horzontal Separator PREFERRED POWDER COATING

Preferred Powder Coating
10846 170th Avenue NW
Elk River, MN 55330

Phone: 763-428-4990
Fax:     763-428-8237
info@preferredpowder.com

directions
DIRECTIONS